Rhizosphere microbes as essential partners for plant stress tolerance.

نویسندگان

  • Axel de Zelicourt
  • Mohamed Al-Yousif
  • Heribert Hirt
چکیده

Ever since plants colonized land, they evolved mechanisms to respond to changing environmental conditions and settle in extreme habitats. Recent studies show that several plant species require microbial associations for stress tolerance and survival. Although many plants lack the adaptive capability to adapt to stress conditions, the ability of a variety of plants to adapt to stress conditions often appears to depend on their association with certain microbes, raising a number of questions: What distinguishes the microbes and plants that can adapt to extreme environmental conditions? Can all plants improve stress tolerance when associated with appropriate microbial partners? Answers to these questions should modify our concepts of plant physiology and could lead to new ways towards a sustainable agriculture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cadaverine’s Functional Role in Plant Development and Environmental Response

Cadaverine derives from lysine in a pathway that is distinct from that of the other well-characterized ornithine- or arginine-derived polyamines. Despite a multitude of studies in bacterial systems, cadaverine has garnered little attention in plant research. Nonetheless, many plants have been found to synthesize it. For instance, the Leguminosae have been shown to produce cadaverine and use it ...

متن کامل

Biological costs and benefits to plant-microbe interactions in the rhizosphere.

This review looks briefly at plants and their rhizosphere microbes, the chemical communications that exist, and the biological processes they sustain. Primarily it is the loss of carbon compounds from roots that drives the development of enhanced microbial populations in the rhizosphere when compared with the bulk soil, or that sustains specific mycorrhizal or legume associations. The benefits ...

متن کامل

Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes

Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about the impact of abiotic stresses on the root microbiota. Here, we have used rice as a model to expl...

متن کامل

Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms

Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and no...

متن کامل

A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor.

The molecular chaperone HEAT SHOCK PROTEIN90 (HSP90) is essential for the maturation of key regulatory proteins in eukaryotes and for the response to temperature stress. Earlier, we have reported that fungi living in association with plants of the Sonoran desert produce small molecule inhibitors of mammalian HSP90. Here, we address whether elaboration of the HSP90 inhibitor monocillin I (MON) b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2013